If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+13x-23=0
a = 2; b = 13; c = -23;
Δ = b2-4ac
Δ = 132-4·2·(-23)
Δ = 353
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-\sqrt{353}}{2*2}=\frac{-13-\sqrt{353}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+\sqrt{353}}{2*2}=\frac{-13+\sqrt{353}}{4} $
| 4.9=0.132/x | | 0.2=x*0.0017 | | -14=-12+c/11 | | Y=-3x+5x-1 | | 5^(x-1)-5^(x-3)=120 | | 300x+340=40 | | 59x=39x+1 | | 11/2+.6x=16 | | 17x-20=20-3x | | (x+10/7)-31/7=-5.8 | | 50=x(x-2)+x+2x+8 | | 8=4(h+13) | | 6x+2=11x-3 | | 1/5(25-15x)=5-3x | | 6(3.5+x)-1=7x-x | | 5(w3+4)=60 | | -4x+(-4-2x)=6-6(4x-1) | | 4^2x+4^(2+x)-80=0 | | -(2-3x)+2x=-3(-6+2x)+5 | | 6+1x=9 | | 5+4x=6+7x.x | | 0.220x^2-30x-135=0 | | 0.226x^2-30x-195=0 | | 0.220x^2-10x-135=0 | | 3y^2-12y+1=0 | | (2-x)(1-x)+0.2=0 | | (2-x)(1-x)+0.25=0 | | (2-x)(1-x)+0.4=0 | | (2-x)(1-x)+0.5=0 | | (2-x)(1-x)-0.5=0 | | y/3-1.5=11.5 | | (40x)+15(1.5x)=1000 |